

Deep-Learning for the Real-time Multimodal Localization and Identification of small UAVs

Application to the surveillance of sensitive sites: robust real-time identification and tracking of drones

Key features

- Real-time fusion of heterogeneous data (EO/IR, Acoustic)
- Distributed sensor architecture
- Fully autonomous system
- Low-cost COTS acoustic sensors
- Multi-spectral optical sensors (VIS, SWIR, LWIR)
- · Al-powered for both acoustic and optronic data

MACHINE LEARNING

Audio and video deep-learning Real-time recognition & localisation

ACOUSTICS

Modular array of compact smart antennas in complex environments

OPTRONICS

Visible/thermal/active imaging Motorised and servocontrolled

MULTIMODAL DATA FUSION

Decision-making and missing data

DEEPLOMATICS Command & Control Software

Functions

- Drone detection, classification and localisation every 200 ms
- Al-enabled orientation of the optronic system for real-time tracking
- Active imaging for optical drone segmentation and range estimation
- User friendly Command and Control HMI for direct threat analysis

Projet DGA Astrid ANR-18-ASTR-0008-03 CNAM (eric.bavu@lecnam.net) Contacts:

> ISL (bdo@isl.eu, sebastien.hengy@isl.eu) Roboost (eric.georges@roboost-sdh.com)

